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Tree-like patterns appear in many domains of physics and the quantitative 
description of their morphology raises an interesting problem. To analyze their 
topological structure, we introduce combinatorial concepts, the bifurcation and 
length ratios and the ramification matrix, which generalize ideas originating in 
hydrogeology. Two-dimensional diffusion-limited aggregation (DLA) patterns 
are studied along these lines, and their statistical combinatorial properties are 
compared to those of random and growing binary trees and to experimental 
data for injection of water in clay. 
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1. I N T R O D U C T I O N  

How can one describe quantitatively the "shape" of a tree, or of a ramified 
pattern in general? Such problems arise more and more frequently in 
various contexts, as image-processing equipment is becoming widely 
available, and there is a growing need for new, well-suited mathematical 
concepts. Branched patterns appear for example in recent studies on elec- 
tric discharges, ~1~ viscous flows, ~2'3) or electrochemical deposition. (4) They 
have been analyzed as fractal objects, (s) but trees with the same fractal 
dimension may have very different topologies, and other ways of charac- 
terizing important physical aspects of a tree structure have been proposed, 
e.g., to measure its "physical complexity" through the diffusion of a 
particle. ~6) 
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We propose here a combinatorial approach to study the statistical 
properties of the topological tree underlying these structures, and we 
introduce in particular a new mathematical tool, the ramification matrix/7~ 
Our approach is a generalization of the Horton-Strahler analysis (8'9) 
applied by hydrogeologists to river basins and of similar concepts used in 
theoretical computer science (1~ and in the study of the secondary 
structure of biological macromolecules/TM As an illustration, the popular 
diffusion-limited aggregation (DLA) model of Witten and Sander (m is 
analyzed and its ramification properties are compared to those of random 
and growing binary trees, and to experimental data for injection patterns of 
water into clay in a Hele-Shaw cell. 

2. B A S I C  D E F I N I T I O N S  

Let us define briefly the necessary combinatorial notions. A binary tree 
is a mathematical object consisting of vertices connected by edges: One 
vertex, the root, has no antecedent (or father); all other vertices have one 
father and are divided into internal vertices, with two sons, and external 
vertices (or leaves), with no son. The order k of a vertex is defined recur- 
sively: k = 1 for a leaf, k = 2 for a vertex having two leaves as sons, and in 
general, if the sons have orders kl and k2, then 

k=max(k l , k2)  if k i c k  2 (la) 

k = k l + l  if k l=k2  (lb) 

(for multifurcating trees the two sons with the largest orders are con -  
sidered). 

The Strahler number S of a binary tree is the maximum order of its 
edges (i.e., the order of its root). It is obtained inductively: S = 1 for a tree 
reduced to one vertex, and if SR and SL correspond respectively to the 
right and left subtrees meeting at the root, 

S = max(S~, SL) if SR r SL (2a) 

S = S R + I  if SR=SL (2b) 

This parameter appears in many problems because it offers a measure of 
the topological size of the tree (Fig. 1)--in computer science, for instance, 
it gives the minimum number of registers needed to evaluate an arithmetic 
expression.(1~ 

A segment of order k is a maximal sequence of edges joining a vertex 
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Fig. 1. A binary tree with Strahter number  S = 3 and its ramification matrix Ri, k. The vertex 
numbers  are /21 = 8, /22 = 5, /23 = 2 and the bifurcation ratios fll = 3/8, f12 = 3. The order of 
each vertex is indicated and the "leaves" are denoted by open rectangles. The different types of 

lines correspond to different segment orders. 

of order k to a vertex of order (k + 1). The bifurcation ratios fig and the 
length ratios 2k are calculated from the relations 

/3k = Z k l X k  +1 (3) 

"~k = ( I k  + l ) / ( [ k )  ( 4 )  

where Sk is the number of segments of order k of the tree and ( l k )  is the 
average (physical) length of segments of order k. In applications to 
hydrogeology the topological tree is extracted from the map of a fluvial 
basin, ignoring islands: The sources of all the affluent rivers correspond to 
the leaves, the junctions to the vertices and the root is the mouth of the 
main river. Empirically,/~k ~/3 and ;tk ~ 2 for a given basin, independent of 
the order k, with 3 -..</3 ~< 5 and 1.5 ~< 3~ ~< 3 for different river basins. ~8'9) 

More detailed information can be obtained by defining a new 
concept, ~7) the biorder (k, i) of a vertex, as the pair of orders of its sons (the 
two largest ones for a multifurcating tree). If o~k.i is the number of vertices 
of biorder (k, i), then the elements of the ramification matrix {R} are 
defined by 

R k, i = 09 k,i/~Q k if k > i 

Rk,k = cok 1,,- 1~Ok (5) 

Rk,i= 0 if k < i  

where Ok is the number of vertices of order k of the tree (with these 
definitions the matrix R is normalized: Z i  Rk,, = 1 ). 
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3. S IMPLE EXAMPLES A N D  " F A M I L I E S "  OF TREES 

It is useful to consider first several simple cases to gain a feeling for the 
physical content of the quantities introduced above: 

(1) For  the perfect binary tree all leaves lie at the same distance from 
the root (in physicists' language, this corresponds to a finite Bethe lattice of 
coordination z = 3). The bifurcation ratios, flk = 2, are the smallest possible 
ones for a tree with N vertices, and the Strahler number, S = logz(N + 1), is 
the largest possible one (here it is just the height of the tree). The 
ramification matrix R has non-zero elements only on the diagonal: 

R~,i  = ~k,i. 

(2) A linear comb with N teeth has only vertices of order 1 ((21 = N) 
and 2 (02 = N -  1 ) and the bifurcation ratio fll = N is the largest possible 
one. The only non-zero elements of R are 

R2,1 = ( N -  2 ) / ( N -  1) and R2. 2 = 1 / ( N -  1) 

(3) A self-similar "fern" is obtained if every branch subdivides into 
b + 1 branches. The bifurcation ratios are i l k - b  + 1 for k~> 2 and the 
non-zero elements of R are 

Rk.k = 1/b and Rk,k - 1 = (b - 1 )/b 

By decorating these structures uniformly with small thorns, one 
introduces non-zero elements Rk.~ in the first column. Qualitatively, large 
weights in the first column correspond to a "spiny" or "bushy" tree, 
whereas large weights along the diagonal indicate a "pruned" structure. 
The concept of ramification matrix gives a precise meaning to these 
intuitive notions. 

Rather than a single tree, one is usually interested in describing an 
ensemble of patterns produced in a nondeterministic way. The relevant 
ramification matrix is then a stochastic matrix, its elements are random 
variables and their average value gives the probability for a vertex to have 
biorder (k, i). Conversely, one can construct by a Monte Carlo procedure a 
typical tree representative of the "family" corresponding to a given 
ramification matrix. Eyrolles ~12) has studied the patterns obtained in this 
way from different matrices, he has shown that a large variety of botanical 
trees can be imitated, using geometrical construction rules (branch widths 
and branching angles) that depend simply on the topological parameters 
(order and biorder). His results are in contrast with most work in this area 
of computer graphics, in which diversity is obtained by changing the 
construction rules on the same f ixed mathematical tree, and they give a 
striking confirmation that the ramification matrix does contain essential 
information. 
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4. A N A L Y S I S  OF DLA A N D  R E L A T E D  P A T T E R N S  

A choice system for the application of the combinatorial analysis is the 
diffusion-limited aggregation model of Witten and Sander, which has been 
successfully invoked to describe many growth phenomena. ~5'16) In the stan- 
dard formulation of DLA, loops are allowed but they are irrelevant for the 
large scale structure of the aggregates. We generated strictly loopless DLA 
trees on a square lattice, with S~<8, and their fractal dimension and 
appearance agreed with those of standard two-dimensional DLA. In prac- 
tice, when such a theoretical model is claimed to be in good agreement 
with experiment, this means that the aggregates generated on a computer 
following the rules of the model "look similar" to the observed structures 
and an expert immediately recognizes two-dimensional DLA-type patterns. 
The brain reaches that conclusion by processing a lot of information 
contained in the pictures, achieving a sophisticated pattern matching task 
which remains a major challenge in artificial intelligence, and for which no 
general method exists. The computation of fractal dimensions provides a 
useful way to measure that similarity, but it is only a partial confirmation 
of a deeper intuition, and complementary mathematical tools like the 
ramification matrix are needed to extract more of the relevant information 
from the patterns. 

The topological properties of DLA structures may be compared with 
those of some other systems: 

(1) In the case of the random binary tree, all possible binary trees are 
considered, with the same weight and without any spatial constraint (they 
correspond to lattice animals on a Bethe lattice, i.e., in infinite dimension). 
The bifurcation and length ratios are given by/~k - 4, 2~ - 2 for a represen- 
tative tree in the limit of infinite size (17) (the length of a segment is defined 
here as the number of its links). Their ramification matrix has the simple 
form of a geometric series (J. Penaud, preprint, University Bordeaux-I): 

gk,i= (1/2) i, Rk, k = (1/2) k-I  (6) 

with a remarkable self-similarity: if all vertices of order 1 are removed (e.g., 
because the spatial resolution of the picture is lowered) and the remaining 
matrix is rescaled by a factor 2 to preserve normalization, the original form 
is recovered. 

(2) For the growing binary tree, the weight of a particular aggregate 
is proportional to the number of different ways it can be grown: this rule 
favors compact configurations over filamentary ones. 

(3) VanDamme et al. ~18) have observed ramified patterns during the 
injection of water into clay in a Hele-Shaw cell, and we have studied four 
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of their patterns, obtained under fixed experimental conditions (Fig. 2). 
Here, the Strahler number was 5 or 6. The ramification analysis was 
carried out by hand and we checked that the identification of higher-order 
segments remained stable when the size of the smallest details taken into 
account varied. That type of stability is also realized for river basins, it 
insures that the results have physical meaning. 

The results for these various systems are presented in Figs. 3 and 4. 
The length ratios 2k are approximately constant for DLA and close to the 
random binary tree value 2Rr= 2, but the bifurcation ratios flk are con- 
sistently larger for small k than /~Rr=4 and they decrease rather rapidly 
when k increases (Fig. 3). The elements Rk,; of the DLA ramification matrix 

Fig. 2. One of the injection patterns of water into clay analyzed: water pressure = 2.104 Pa, 
clay paste at a concentration 8 % per weight, in a Hele-Shaw cell of radius 25 cm and width 
0.2 mm (courtesy of C. Laroche and H. VanDamme,  CRSOCI  Orl6ans). 
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Fig. 3. Bifurcation ratios flk and length ratios 2k for the random binary tree ([], exact 
results from ref. 17), for two-dimensional diffusion-limited aggregation, with 104 particles 
(�9 250 trees) and with 4. 104 particles (0, 100 trees), and for injection patterns (x, the bars 
indicate statistical fluctuations on 4 samples). The lines are just guides for the eye. 

are close to the r andom tree values (Fig. 4), but  the deviations are non-  
etheless significant and well outside statistical errors. In particular, the Rk,i 
decrease faster than for r a n d o m  trees when the index i increases. The com- 
parison of the experimental da ta  on injection patterns with the theoretical 
models shows that the best overall agreement is obtained with DLA,  
provided the mass of  the D L A  clusters is limited to N = 104 particles, i.e., if 
trees of  identical Strahler numbers  are compared  (Fig. 3). This indicates 
that  this parameter  provides a good  measure of  the "size" of  a physical 
tree, and our  results give a more  quanti tat ive basis to the intuitive 
conclusion that  the D L A  model  can account  for the morpho logy  of 
two-dimensional  injection patterns. 

The growing tree has a markedly  different behavior. Here the 
ramification matrix elements increase with the index i (Fig. 4), indicating 
that the structure is much Jess spiny. This result is rather surprising: 
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Fig. 4. Variation of the elements R~.~ of the ramification matrix for DLA, random binary 
trees and injection patterns (same symbols as in fig. 3) and for growing binary trees (~, 300 
samples of 1.3 10 ~ segments, private communication of J. G. Penaud). The data correspond to 
k = 5, except k = 4 for injection patterns. 

Indeed, the growing tree is an infinite dimension limit of DLA, (19) so 
one might expect similarities in their topological properties. The deep 
differences observed suggest that the strong constraints imposed by the 
two-dimensional nature of the processes play an essential role, as far as the 
topology is concerned, and this is confirmed by the study of another model, 
the Eden tree (2~ (J. Vannimenus, unpublished). One may expect that in 
three dimensions DLA has a more complex structure, intermediate between 
the random and growing trees, and the comparison with the topological 
properties of chemical dissolution patterns/21) would be very instructive, 
though it raises serious practical difficulties. 

C O N C L U S I O N  

We have not at tempted to calculate the combinatorial  properties of 
DLA, nor to relate them to its fractal character. Our  goal here is more 
modest and remains at a purely descriptive level, yet we think the new 
approach which we have presented should prove useful for the analysis and 
classification of physical branched patterns. Firstly, random trees and 
growing trees provide two simple examples with very different topological 
properties, for which detailed exact or numerical results are available for 
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comparison with other patterns. Secondly, our results for DLA and injec- 
tion patterns show that to be meaningful such comparisons have to be 
made between trees of identical Strahler number, a combinatorial 
parameter which defines a measure of topological size. Finally, the concept 
of ramification matrix gives a precise meaning to such notions as "bushy" 
and "pruned" structures, and it offers a new quantitative way to assess the 
relevance of different models to experimental data. Of course, the problem 
of describing the shape of a tree has many facets and the combinatorial 
method addresses only one aspect, so that in spite of its success for the 
computer generation of "botanical" trees ~12) different approaches may be 
better suited for specific systems. 
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